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Abstract—A systematic internal model control (IMC) controller design methodology has been developed
for various types of multivariable processes. When we try to apply IMC to various systems several iniplemen-
talion problems are encountered. In this paper, we resolve these problems and sugges! a syslematic IMC con-
trolter design methodology. IMC shows very good performance and is easy to tune for open-toop stable
systems. For unstable systems we apply IMC after stabilizing the systems using the pole placenient technigue.
A combination of quadratic programnung and IMC can hardle constraints on manipulated and controlled

variables.

INTRODUCTION

Two powerful multivariable control techniques
were developed independently in the late 1970's. One
is now referred to as model algorithmic control (MAC)
(Richalet et al., 1978), and the other is called dynamic
matrix control (DMC) (Cutler and Ramaker, 1980j.
They are not the result of a new theory but have a
heuristic basis. To date, these techniques have been
applied successfully to such diverse systems as a crude
column, fluid catalytic crackers, distillation columns,
green houses, F-16 jet engine, and power plants.

Another important development is internal model
control (IMC). IMC controller was proposed by Garcia
and Morari (1982) for single-input-single-output (SISO}
systems, and it could include many conventional
schemes (Smith predictor, deadbeat controller,
Dahlin’s method, etc.) as its special cases. Garcia and
Morari extended the IMC controller concept defined
for SISO systems to multiple-input- mulziple-outpul
(MIMQ) systerns (1985a). Ricker combined the quadratic
pragramming with the IMC controller (QP IMC) to han-
dle input and output constraints (1985).

IMC consists of three parts: (1) internal model to
predict the effect of the manipulated variables on the
outputs; (2) filter to achieve a desired degree of
robustness; (3) control algorithm to compute values of
the manipulated variables based on present and past
errors and setpoint trajectories. This IMC structure has
several advantages: (1) The closed loop stability is
guaranteed. {2) Any constraints violalions can be
anticipated and corrective actions can be taken. (3)
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The filter allows simple on-line tuning of multivariable
controllers by operating personnel. (4) An IMC
controller achieves perfect set-point satisfaction
despite any disturbances and model/plant mismatch,
and increases robustness for model/plant mismatch
and requires less violent actions in the manipulated
variables through filter. (5) The structure and
parameters of the “optimal” controller are known “a
priori”, it is the inverse of the invertible part of the
system model. This target makes it simple to find
suitable approximation for practical implementation.
(6) IMC automatically includes an optimal multfivari-
able time delay compensator. (7) IMC allows to obtain
coupled and decoupled controllers with equal ease.

A number of papers have been presented on the
theoretical aspects of IMC. Even though there are few
practical applications reported, IMC is of great
theoretical interest to determine how closely the ideal
can be approached.

In this paper, we develop a systematic controller
design methodology using the IMC concept for mul-
tivariable contral problems with constraints.

THEORETICAL FUNDAMENTALS

The IMC structure (Figure 1b) is mathematically
equivalent to the classical feedback structure (Figure
1a).

The relationship between IMC controller G{z) and
the conventional feedback controller C(z) is

C.iy={1-G. 210Gz} "G,z ila;
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Fig. 1. Classic feedback structure (A) and Basic IMC
structure (B).

where G is the plant and G is plant model. Conversely

G.iz)={1+C.2z)G(z))'C,(z), (1b;

From the IMC structure (Figure 1b) the input and
output transfer functions are

mizi=+G. 2 (G -G@) ) 'G, iz}

(sizi—-d(z}) (2)
yzi=d (24 Gz) {+G,. 2 (Giz) -G () ]+~
G.iz)(slz)—d(z)]) (3)

which are obtained by standard block diagram man:p-
ulations. From transfer functions above we find these
properties:

Property 1. Dual Stability Criterion. Assume
G(z) = G(2). If the controller G(z) and the process G(z)
are stable, then closed loop stability is guaranteed.

Property 2. Perfect controller. Assume that
the controller

G.zi=Gz)™
yields a closed-loop stable IMC loop. Then, this con-
troller achieves perfect set-point satisfaction despite
any disturbances d(z) and model/plant mismatch
G(z} # G(z). B

When G (z} = G(z)"!, however, this controller s
not realizable. Though “perfect control” cannot be
achieved, it is of great theoretical and practical interest
to determine how closely this ideal can be approach-
ed.

Property 3. Zero offset. Any controller G (z)
such that

G iz;=Gz)™
and which produces a stable IMC loop yields zero off-
set.
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IMC CONTROLLER DESIGN PROCEDURE

1. Open-loop stable systems
1-1. Unconstrained systems

According to Property 2 an IMC controller is de-
signed as G (z)= G(z)"'. However, this perfect control-
ler cannot be implemented for the following cases:

(i) G contains time delays

(ii) Zeros of the transfer matrix [denoted as trans-

mission zeros of G(z)] outside the complex unit cir-

cle (UC)

(iii) Poles of G (z} close to (-1,0{even when stable)*

(iv) Modeling error.

To handle above limitations [(i)-(iv)], Garcia and
Morari (1985a) suggested a two step controller design
procedure

STEP 1. Dynamic performance

The model is factored as

G=G.G. (4)

G.il)=1 (5)
where G, contains time delays and all the zeros of G
outside the UC, and a controller is

G.=G . (6)

For MIMO systems, there is generally quite some
freedom for choosing G , . These options are discussed
in detail by Holt and Morari (1985a, b).

STEP 2. Robustness to modeling errors and alle-
viation of strong control action

In order to detune the controller for increased ro-
bustness and less violent actions in the manipulated
variables, Garcia and Morari (1985a) introduced a di-
agonal first order filter

G.=G'F {7
where
F:diag[-l:&;]; 0<a,=1 (8)
1-a,z

can stabilize the closed-loop system for any model/
plant mismatch satisfying

Re A, (GG )i>0 j=1,--n (9)

where A [Q] denotes the jth eigenvalue of Q.
For G(z) = G(z) IMC controller (Eq. 7) yields the
closed-loop expression

y=G, 2)F (z)[s(z)—d (2)] +d (z) (10

In IMC controller design procedure above, a solu-
tion for unstable zeros is to factor transmission zeros
outside the unit circle into G, as suggested by Holt
and Morari (1985a) and Garcia and Morari (1985a). An
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exact determination of the zeros of G can be difficult
due to numerical errors. [n this situation a simpler but
possibly less optimal sclution is to use the input
weighting matrices 8 #0, and a large optimization
horizon p in IMC controller design methodology in
Section 2-2. Also, we can distinguish systems into two
types which are minimum phase systems and non-
minimum systems. A minimum phase system means
that the system model G(z} has transmission zeros in-
side the unit circle and G(z)' is stable. Nonminimurm
phase systems have transmission zeros outside the
unit cirlce, and G(z)™! is unstable.

When an IMC controller is designed by Eg. (6), the
elements of the IMC controller become polynomial
rational} functions. This IMC controller design proce-
dure generates numerical difficulties. These numerical
difficulties can be resolved by deriving the following
formulae

i R R
0:1112 + +0fumtiﬁ+|

Cou= 8\ 2+t 8zt By
N~
= Z A“u‘kzmttjhnn—k (11>
k=1
Amzﬁu;x/é‘, when k=1

k-1 —-
A‘Urk: (Hu/ A hz 5n-m\Alu:h.)/(5\x when k#1
=1

N: No. of terms describing the model.

In the case of 2 x 2 systems whose elements are 1st
order transfer functions, we can easily derive a general
inverse formula of the invertible part of the system’s
transfer matrix. [n the other cases, i.e., 7 xn systems
(n=3) and 2x2 systems whose elements are high
order transfer functions, a general inverse formula of
the invertible part of the system’s transfer matrix is
very complicated. Therefore, in the next section we
will explain the IMC controller design methodology
which uses the impulse response nmiodel without using
the inverse matrix of the invertible part of the systen's
transfer matrix. However, in simple systems such as
2 » 2 systems whose elements are lst order transfer
functions, an IMC controller using the irverse matrix
of the invertible part of the system’s transfer matrix
can deliver the same performance with less effort and
time, and easier tuning.

1-2. Constrained systems

Assume G(z) =G(z). [t has become common
practice to use an impuise-response representation for
the transfer function matrices G and G (assumed to be
open-loop stable)

yiz)= (H,+H,z7'~H,z*+ - Imiz) —d (2 12)

or in the difference equation form

Yrepo=Hem, ,+Hm,, ,  +Hm,  ,

+- (future)
+H,m, [present ]
+H,, m, ,+H, ,m, -+ [past)
+d,., 13

where k is the current sampling interval, k+ p is a
future sampling interval, and y,,, denotes a pre-
diction made at interval k. If a model of the impulse
response type is used to represent the process, there
are several advantages; the order of the process is not
at all important. nonminimum phase characteristics
can be easily handled, and parametric modeling is not
required.

When the process dead time is r, the effect of m,
will not appear until v+ 1 sampling intervals have
elapsed. After r+ 1 sampling intervals have elapsed,
in order that IMC includes a multivariable time delay
compensator Garcia (1985b) introduced a diagonal fac-
torization of original transfer function matrix.

Gz)=G. {z1G_ (z) (14)
where
G, (z) =diag (z71+". g~ Tart (15)

r,=min r,=20 i=1n j=1m {16

and r,; is the number of sampling intervals of process
dead time between m; and y,. Then
Yorp=G, ()Y @) 4, ,

=Hame,  FHeome o o Hagmy, g

NI [future)
+H, m, [present )
+Hipeym, 4 H,,om, -+ [past]

Rt PN an

Let b+.k+p = H*p+]mk—1 + H*p oy o+ et d+,k i pr
and collecting the p future values of y, into a vector
gives

Y+.k+l H:u 0 Uy b,‘,“l
_ H*‘zH:«|<< 4
Yorip H*o“*p—l"'“*l Upip bikep
{13)
or
Y, =Gym,, + b,” 19

where y., and b., are vectors containing np elements,
m., is a vector containing mp elements, and G. is a
np x mp lower-block-triangular matrix. The best pre-

Korean J. Ch. E. (Vol. 7, No. 2)
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Fig. 2. IMC structure with pole placement.

diction of the disturbance is to set it equal to the dis-
turbance at the present time

d =d, for all k+p>k. 20

ke p

At each time k, the following general problem is
solvec

min 1/2 ((Su, = Yu,) T B4, = ¥a,) +m], fm,,]
{21
where I and 8 are weighting matrices.

Solution of Eq. (21} is subject to the following con-
straints

m,<m,,<m,* 22
Yie SYrrSy % 23
where m* m * y;x and y,* are manipulated
variables’ lower and upper bounds and controlied
variabies’ lower and upper bounds constant vectors

respectively.
Let us define a new nonnegative vector

U= Max— M ¥, {24)

Equations (22) and (23) can be combined in the gen-
eral form by a new vector (24)

Du>r. 25

Finally, substituting Egs. (19) and (24) into Eq. (21)
converts the optimization problem to the form

min {1/2u"Ru —a"u) (26
i
where
Z‘lT:: (s*k-bn)TFG*—mL*TR (27)
R=GLIGxt+g (28

and u is to be determined subject to Eq. (25).

The solution of Eq. (26) provides a sequence of in-
puts to be implemented in the future. However, in
order to compensate for disturbances, only the present
input m(k) are implemented and Eq. (26) is “solved”
again at subsequent intervals.

2. Open-loop unstable systems

If a process is unstable, Property 1 does not hold

and the closed loop system will generally be unstable.
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In this case, the unstable process is stabilized by pole
placement (Figure 2). The stabilized process transfer
functions are

G*={1+GK)'G 29
*= (1+GK)-'d (z) (30)
u{zi=m(z) - Ky (2) 30

Consider G* is a controlled process in the IMC
structure, then we can design IMC controller with the
model G* of the stabilized process G*. In Section 2-1
we explain a numerical method for calculating the out-
put feedback gain K.

If it were not for constraints, we could use the IMC
controller design methodology which is explained in
Section 1-1. If we design IMC controller with quadratic
programming for the stabilized process model G,
then we can handle the unstable process with con-
straints. Actually w(k) is implemented for the control
valve, but IMC controller with quadratic programming
can only handle the constraints of m(k). Therefore, we
take into account the value of feedback signal at steady
state when we determine the constraints of m(k).
However, there is no direct way of consistently recog-
nizing that hard limits on u(k) have been reached in a
raultivariable control scheme of this sort. A constraint
action scheme has been imposed on the control algo-
rithm to compute future values of the manipulated
variables, which accomplishes the necessary clamp-
ing. The control algorithm has the capability that is
related to alarming of measured values. Alarms may
be invoked for any measured point in the computer
database. For example a high limit and a low limit
may be declared for a measurement. The points de-
signated for alarm are constantly monitored and if a
limit is exceeded a unique alarm condition is declared
for that point. An alarm action program was written
which accomplishes the appropriate clamping re-
quired in the control strategy. Alarm points were
declared for variables in the control strategy. The func-
tion of the alarm action program is to set a digital bit
that is one of the clamp limits of the control algorithm
blocks. The program is completely generic.

2-1. Design of an output feedback matrix

Consider a controllable, observable and cyclic mul-
tivariable system described by the state and output
equations

x k+1)=Ax(k)-+Bu (k) (32)

y {k)=Cx (k) 33
where x(k] is the nx 1 state vector, u(k} is the jx 1
control input vector with 1<j<n, y(k) is the [ x 1 out-

put vector with 1</<rn and the matrices B and C are
of full ranks j and / respectively. The system can be
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described by the transfer function relationship

Wiz) .

Vo) Ve B
where W(z) = C adj(zl-A)B is the / x / numerator poly-
nomial matrix and V(z)=|zI-A/| is the nth order open
loop characteristic polynomial. The numerator poly-
nomial matrix W(z) and the denominator polynomial
V(z) can be expressed in powers of z as

Yz)=CizI-A)"'BU(z)=

Wiz)=W,z" '+ +W,z—- W, (33
Vigy=z"+ez" ' +e,zte, {36)

where W/s are constant / x j coefficient matrices and
e/s are constant scalar coefficients.

Let us now apply the constant output feedback
control law u = m-Ky where m is the j < 1 command
input vector, and restrict the j x / constant output feed-
back matrix K to have the unity rank structure K = gh
where q and h are constant j x 1 and 1 x { vectors re-
spectively. The closed-loop system then becomes

x k+1)= (A- BKC)x k: +Bmtk) (37

and the characteristic polynomial of the closed-loop
system is (see Ref. 2)

Hz)=|21-A+BKC|=V (z) +hWiz)q
=z"+ (hWpq+e,)z" ' +---+hW g+e,. (38

Let us denote the desired closed-loop characteristic
polynomial by the following equation

no1

Hizi=z"+g,z e gzt g 39

Equation expressions (38) and (39) and matching coef-
ficients of like powers of z on both sides give

hw,q+e,=g,
hw.,q+e, =g,

h“?nq +en:gﬂ- @

The pole placement problem thus reduces to finding
the j + / unknown elements of the two vectors q and h
to satisfy the set of n nonlinear algebraic equations,
Equations (40), as closely as possible.

A numerical method is now described for the cal-
culation of q and h. The two vectors q and h are recur-
sively modified in turn to solve Eq. (40) by minimizing
the error function E{q,h) = 5 (hW.q + e~g]*

Each equation of (40) is a"s'pecial kind of nonlinear
equation called “bilinear” in that for a given q the
equation is linear in h and for a given h it is linear in
q. We make use of this bilinearity property and solve
Eq. (40) as follows: Treating q as constant, Eq. (40) can
be written as a set of linear equations in h as

Lh™=f @4l

where L is a constant n x { matrix whose ith row is
qTW,T and f= (g€, -, g,,-en]T is a constant nx 1
vector. Alternatively, treating h as constant, Eq. (40)
can be written as a set of linear equations in q as

Mg=f 42

where M is a constant n x m matrix whose ith row is
hW,. Equations (41) and (42) are now solved in the
least-square sense by the following recursive algorithm
to minimize the error function

ul

Eg,h)=23 hW,qie,~g P=|Lh"-f|?
1

= [ Mq-fI°

(i) Set q=q", the initial value of q, and find the
least-squares solution of Eq. (41) as

hTm:’— EL (qu ‘\]'f

where + denotes pseudoinverse. The least-squares
error of Eq. (41) is then given by

E,:E'q;h‘hl )= 1 L{q' TR — f “z.

(i) Set h = h'" and obtain the least-square solution
of Eq. (42) for q as

qyz‘: [“ h ;‘]‘f-
The least-squares error of Eq. (42) is then given by
Ezz E g Zv_ h'y =M (h'l\‘]q'l‘, —f | z.

(ii) Update q to its refined value ¢“' and repeat (i) to
obtain h®, the refined value of h, and evaluate the
least-squares error E,,

(iv) Set h=h® and repeat (ii) to obtain g and
evaluate the least-squares error E,.

() Set q=q"¥ and repeat from (i) until conver-
gence.

In Ref. 12, it is shown that the successive errors are
monotonically decreasing for all initial value g until:

(a) The absolute minimum value of E is reached at
" iteration and E,,>0. Then the error cannot de-
crease any further and E, = E, for all | >i. In this case
the pole placement problem does not have an exact
solution and the best approximate solution is given by
the last values of q and h in the " ileration.
or (b) A local minimum of error function is reached at
the /" iteration and E, | is not outside of this local
valley. Then again we have E =E, for ail j>1. In this
case different initial values q* must be tried in order
to avoid the local minimum,

If neither {a) nor (b) occurs, the pole placement

Korean J. Ch. E. (Vol. 7, No. 2)
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Fig. 3. Equivalent representation of Figure 2 for in-
ternal stability analysis.

problem has an exact solution and the error decreases
monotonically towards zero and the recursive proce-
dure is continued until the error is acceptable.

APPLICATION EXAMPLES

1. Minimum phase systems

1-1. Open-loop stable systems
1-1-1. Unconstrained systems

Pulse testing of a distillation column yields the fol-
lowing dynamic model between product concentra-
tions y,, y, and product drawoff rates m;, m,:

oy (L o
4 10s+1 8s+1 ||™®
- -78 ~-38
gl ) L0ze 0se

7s+1  5s+1

Time is measured in minutes. Assume the process
model is exact. When a sampling interval of 1 min is
used, the discrete time transfer matrix has the form

z7%g,, 2)z7'g,, (2)
G(’z)—[ Enielz Bu }

27%g,, (2)27g,, (2)

where the elements g; are semi-proper functions of z.
We obtain the factorization matrix through the IMC
controller design procedure

- z? 0 . wiz) 277 gy, (2)
GJZ):[ ‘J G._ (Z):[g g:zl ]
0 z 278, (2) g.@

An IMC controller is
G.=G'F
- a
1-az™"

where F=

The response of the perfect controller G, =G~' to a
set-point change in y, to 1.0 is shown in Figure 6. This
deadbeat response shown in Figure 6 is obtained
through relatively strong input action. A tuning pa-
rameter @ which has a direct effect on the closed-loop
response {Eq. 10) can alleviate the strong input action
(Figure 4,5}
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Fig. 4. Manipulated variable 1 (m}) responses to y,
setpoint change.
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Fig. 5. Manipulated variable 2 {m;) responses to y;
setpoint change.
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05 i —
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Time{min)
Fig. 6. Controlled variables 1 (y;) responses to y;

setpoint change.

The performance of IMC is compared with that of
Pl controller using deadtime compensator. SISO PI
loops with controllers

g£,=10+1/s
g.,=10—2/s

are used. Figures 6 and 7 show that the performance
of IMC is superior to Pl controllers with dead time
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Fig. 7. Controlled variables 2 (y;) responses to y,
setpoint change.
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= 15
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5 frerplleersitess
= -0.5
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Time (min)

Fig. 8. Wood/Berry column: Manipulated variables
responses to y, setpoint change (without con-
straints).

compensator. When IMC are used, smoother ap-
proaches to the setpoints are obtained.
1-1-2. Constrained systems

We have studied two systems which are Wood/
Berry column model and Gagnepain and Sebog model.
1-1-2-1. Wood/Berry column model

IMC with quadratic programming is applied to
Methanol/Water Distillation column. Wood/Berry
{1973} have reported transfer function models of an ex-
perimental methanol/water column. The column
model is

v i) 12.8¢7° -18.9e° o)
> 16.7s+1 21.0s+1 !
) 6.6e™  —19. 47 m, )

v 10.9s+1 14 45+1 :

3.8e7%
14.95+1

+ d(s).
4.9e7%
13.2s+1

Time is measured in minutes. Assume the process
model is exact. We used a sampling interval of 1 min.

g 2]

-}

'%‘ 1.5

g 1 # REFLUX(C)

15 + STEAM(C)

= 05 !

g +

0 - [ &j E}—_’j * [:}-.*:F‘:C:Hm
g -0.5

0 5 10 15 20 25 30 35
Time(min)

Fig. 9. Wood/Berry column: Manipulated variables

responses to y; setpoint change (with con-

straints).
v 2
[
> 1.5
K
% | = OH COMP
= ¥ + BO COMP
g 05 # OH COMP(C)
g ' © B0 COMPAC)
g 0 * LA B e R R e R R s s s e o o Ao s s s o
a -05

0 5 10 15 20 25 30 35
Time (min)
Fig. 10. Wood/Berry column: Controlled variables
responses to y, setpoint change.

The diagonal time delay factorization matrix for this
system is

'zt 0 ]

0zt

Weighting matrices of the optimization problem are
I'=1, =0 and the optimization horizon is 10.
Lower and upper bounds of the manipulated variable
are assumed to be m, = -0.4 and m; = 0.6 respec-
tively. When the filter time constant « is 0 and manip-
ulated variables have no constraints, the IMC control-
ler behaves like a perfect controller (Figure 8,10). If
constraints of the type given in Eq. (25) are imposed,
the IMC controller can handle constraints with some-
what loose performance (Figure 9,10).

To investigate the case of model/plant mismatch
we obtained a model with a structure

11.8¢™% -—17.9e*
— 15.7s-++1 20.0s+1
G=

6.0e”” —18.4¢%

10.9s+1 13.45-+1

For this model, the diagonal time delay factorization
matrix is

Korean J. Ch. E. (Vol. 7, Ne. 2)
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Fig. 11. Wood/Berry column: Manipulated vari-

ables responses to y,; setpoint change (with
modeling error).

/ % OH COMP |

Deviation from steady state
o
=

o
|
|

—

Deviation from steady state
=2

+BO COMP |
021} I
f aaas®
AREAS e M«wmn.%%
02l e
0 5 10 15 20 25 30 35 40 45 50

Time{mun)
Fig. 12. Wood/Berry column: Controlled variables

responses to y; setpoint change (with model-
ing error).

G.zi= .
0 z°

The simulation result of plant/model mismatch
case is shown in Figure 11, 12. When a= 0.8 the IMC
controller achieves good setpoint tracking even for the
case with the model/plant mismatch.
1-1-2-2. Gagnepain and Seborg model

The 3x3 system is

-2 15 1
10s—-1 5s+1 s+1
15 -1 2

G= 55s—1 s+1 10s +1

1 2 1.5

s+1  10s+1 5841

Time is measured in minutes. Assume the model is
exact. We used a samipling interval of 0.1 mn. Filter
time constant e is 0.5. Weighting matrices of the
optimization problem are I'=1, B=0 and the
optimization horizon is 10. When the constraints were
not imposed on the manipulated variables, the
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Fig. 13. Gagnepain and Seborg model: Manipulated
variables responses to y; setpoint change.
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020 I

0 5 10 15 20 25 30 35 40
Time{min) = 10
Fig. 14. Gagnepain and Seborg model: Controlled
variables responses to y; setpoint change.

Deviation from steady state

responses of the IMC controller with quadratic
programming are shown in Figure 13, 14. The results
show that IMC controller achives good setpeint
tracking. We have easily designed IMC controller
using the impulse response model for the 3 x 3 system.
1-2. Open-loop unstable system

A two-input-two-output system is

xik—1)=Ax k) Bu ik}
y k)=Cx (k)

-1.1 0.1
where A:{ J

0.2 -1.3

0.1 0.2
B=
0 0.1
(10
C= :
0 1

As the poles of this system are -1.0268 and -1.3732,
the system is open-loop unstable. This system can be
stabilized by pole placement (Figure 2).

x k b1i=Ax k)4 Bu k) 43
y (ki=Cx k) 44
uk)=-Kyk) +miki. 45)

Substituting Eq. (45) into Eq. (48) gives



IMC Controller Design for Multivariable Systems 123

97
w.’-&“'m.."*."”m.—-
1

oMl T
Ry + MG

5 10 15 20 25 30
Time{min)
Fig. 15. Unstable process: Manipulated variable 1
(m,) responses to y; setpoint change.
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Fig. 16. Unstable process: Manipulated variable 2
(my) responses to y; setpoint change.

x (k+1)=(A-BKC)x (k) ~Bm k.

17

- 0
When K:[ J the poles of the closed-loop

process are 0.5 and 0.5. It is stable. IMC control can be
applied to the stabilized process to improve control
performance. Weighting matrices are I' =l and £ -
0 and the optimization horizon is 5.

We have simulated two cases to a sel-point change
in y, to 1.0. In the first case, the filter time constant a
was set to 0 and the constraints were not imposed on
the manipulated variables. In the second case, we
used a =0 and imposed constraints orn manipulated
variables, The first manipulated variable's lower bound
was my; = -11.0. The second manipulated variable's
upper bound was m,,, == 6.0. No other constraints were
considered. The results from the first case show the
perfect control for set-point tracking at the expense of
big changes in the manipulated variables as shown in
Figure 15, 17. The result from the second case shows
poorer and slower response to set-point change with
smaller changes in the manipulated variables as
shown in Figure 16,17. But both cases show stable
control.

L 15
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2z 1 -

o ! ; -

L | + Y1

E 05 |rJ’ + Y2

£ / * YI(C)

R = owal ...

:3

a 05

0 5 10 15 20 25 30

Time{min)

Fig. 17. Unstable process: Controlled variables re-
sponses to y, setpoint change.
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Fig. 18. Karim model: Reflux responses to y, set-
point change.

2. Nonminimum phase systems

We have studied Karim model. The cpen-loop
model of a 30-plate, 22.8 ¢m diameter sieve tray
column has been reported previously (1979). The
controlled variables are the pressure-corrected ten-
peratures at plates 4 and 24. The manipulated vari-
ables are reflux and steam flow rates. The cpen-loop
responses are obtained by giving step changes of - 10
percent change is

gy (o0.dere 053 L
Y 155 F1 1.5s+ 1|0

- ~0.306e % 0.069¢" -
V. (S) : m,(s)

s+l

The output vector and the input vector are

[T“} {RC]
y(si=}|. m g)=
I, St

where T, and T, are the pressure-corrected tempera-
tures of plates 24 and 4, respectively, and Re and St are
reflux and steam flow rates.

Time is measured in minutes. A sampling interval
of 1 min is selected. When the process model is exact,
the discrete time transfer matrix has the form

© 2158741
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Fig. 19. Karim model: Steam responses to y, set-
point change.
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Fig. 20. Karim model: Controlled variables re-
sponses to y| setpoint change.

—2.8647X107%z" 4.72x107%z"

o z—0.93551 z—0.91472
G(z)=G(z)=
—1.4233x107%z7° 6.273%X107%z!
z—0.95455 z—0.9131

which is open-loop stable. Then the roots of the nu-
merator of

det G (z)= (- 1.786+3.3414z"'+5.1577122

—-12.423 z7°+5.740513z"*) x 10~*/
z—0.93551) (z—0.91672) (z—0.95455)
{z-0.9131)

gives the system zeros

z=0.933453, 1.96089, 0.908620, -1.93225
and consequently G has transmission zeros outside
the unit circle.

If G(z) has transmission zeros outside the unit
circle, simple exponential filtering alone cannot
stabilize the closed-loop system. If we select output
weighting matrices as I and the optimization horizon
as 10, this system can be stabilized with any input

weight: in fact 8 == 107l produces a stable controller.
The filter time constant e is 0.5. Lower and upper

April, 1990

S.S. SHIN and S.W. PARK

bounds of the manipulated variables are assumed to

be mL:[ -2.5

] m,= 2.5 respectivel
-1.0) " L5 v

When manipulated variables have no constraints,
IMC controller with quadratic programming achieves
good setpoint tracking (Figure 18, 20). If constraints
are imposed on manipulated variables, the IMC con-
troller with quadratic programming can explicitly
handle constraints with poorer performance in the
controlled variables as shown in Figure 19, 20.

CONCLUSIONS

IMC is implemented for different types of multivari-
able control problems. The following conclusions have
emerged; (1) When an IMC controller is designed by
inverting the invertible part of the system’s transfer
matrix, the elements of the IMC controller become
polynomial rational functions. This IMC controller
design procedure generates numerical difficulties. We
derived general formulae for 2x2 systems to resclve
these numerical difficulties. (2) Using quadratic pro-
gramming we could easily design the IMC control-
lers for 3 x 3 systems and nonminimum phase systems
without using an inverse matrix of the invertible part
of the system'’s transfer matrix. (3) Quadratic program-
ming (QP) can handle MIMO systems with constraints.
(4) IMC control can be used for open-loop unstable as
well as stable systems. For open-loop unstable pro-
cesses, we can apply IMC control after stabilizing the
open loop unstable system using the pole placement
technique. Simulation results show stable and good
control performance.
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NOMENCLATURE
K,I- . coefficient of controller transfer function
C(2) : conventional feedback controller

d(z) : disturbance

F(z) : filter

G.(z) : IMC controller

G(z) : process transfer function

f}(z) : process mode] transfer function

H;, : impulse response coefficient

m(z) : manipulated variable vector

m., : collecting vector of p future values of future in-

puts



m,. :
m. :

8(z)
¥(@)
¥
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manipulated variables’ lower bounds
manipulated variables' upper bounds

: set-point vector

: controlled variable vector

: collecting vector of p future values of future
outputs

Greek Letters

NN R

. filter time constant

: input weighting matrix
. output weighting matrix
. time delay
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