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Abstract--A systematic internal model control (IMC) controller design methodology has beell developed 
lot various types of multivariable processes. When we try to apply IMC to various systems several implemen- 
lalion problems are encountered. In ~hi.'; pa~er, we resolw., these problems and suggesl a syslematic IMC cun- 
troller design methodology. IMC shows very good performance and is easy to tune for ,.~pen-loop stab[e 
systems. For unstable systems we apply [MC alter stabilizing the systems using the pole placement technique. 

A combination of quadratic programm,ng and [MC can ha[:dle constraints ,.~n manipulated and controlled 
variables. 

INTRODUCTION 

Two powerful multivariable control techniques 
were developed independently in the late 1970's. One 
is now referred to as model algorithmic control (MAC) 
(Richalet et al., 1978), and the other is called dynamic 
mat,ix control (DMCO (Cutler and Ramaker, |980j. 
They are not the result of a new theory but have a 
heuristic basis. To date, these techniques have been 
applied successfully to such diverse systems as a crude 
column, fluid catalytic crackers, distillation columns, 
green houses, F-16 jet engine, and power plants. 

Another important development is internal model 
control (IMC). IMC controller was proposecl by Garcia 
and Morari (1982) for single-input-single-output (SISO) 
systems, and it could include many conventional 
schemes (Smith predictor, deadbeat controller, 
Dahiin's method, etc.) as its special cases. Garcia and 
Morari extended ~:he IMC controller concept defined 
for S[SO systems to multiple-input-mul:iple-outpul 
(M[MO) systems (1985a). Ricker combined the quadratic 
programming with the IMC controller (QP IMQ to han- 
dle input and output constraints (1985). 

IMC consists of three parts: (1) internal model to 
predict the effect of the manipulated variables on the 
outputs; (2) filter to achieve a desired degree of 
robustness; (3) control algorithm to compute values of 
the manipulated variables based on present and past 
errors and setpoint trajectories. This IMC structure has 
several advantages: (1) The closed loop stability is 
guaranteed. (2) Any constraints violations can be 
anticipated and corrective actions can be taken. (3) 

The filter allows simple on-line tuning of multivariable 
controllers by operating personnel. (4) An IMC 
controller achieves perfect set-point satisfaction 
despite any disturbances and modeUplant misnmtch, 
and increases robustness for model/plant mismatch 
and requires less violent actions in the manipulated 
variables through filter. (5) The structure and 
parameters of the "optimal" controller are known "a 
priori", it is the inverse of the invertible part of the 
system model. This target makes it simple to find 
suitable approximation for practical implementation. 
(6) IMC automatically includes an optimal mullivari- 
able time delay compensator. (7) IMC allows to obtain 
coupled and decoupled controllers with equal ease. 

A number of papers have been presented on the 
theoretical aspects of IMC. Even though there ate few 
practical applications reported, IMC is of great 
theoretical interest to determine how closely the ideal 
can be approached. 

In this paper, we develop a systematic comroller 
design methodology using the [MC concept for mul- 
tivariable control problems with constraints. 

THEORETICAL FUNDAMENTALS 

The IMC structure (Figure lb) is mathematically 
equivalent to the classical feedback structure (Figure 
la). 

The relationship belween IMC controller Go(z) and 
the conventional feedback controller C~(z) is 
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Flg. I. Classic feedback structure (A) and Basic IMC 

structure (B). 

where G is the plant and G is plant model. Conversely 

O~ (z)= CI 4-Cr (z)G (z) ]- 'Cc(z) .  (lb'J 

From the IMC structure (Figure lb) the input and 
output transfer functions are 

m (z)= !! +-G~ (z) (G (z) - G  tzl )1-'(;~ (z) 

~s (z) - d (z)) (2) 

y (z) =d (z! +G (z) tI +G~ (z) [G (z) - G (z) ! ~ -' 

G~ (z) (s (z) - d (z)) (3) 

which are obtained by standard block diagram man;p- 
ulations. From transfer functions above we find these 
properties: 

Proper ty  I. Dual Stability Criterion. Assume 
G(7) = G(z). If the controller G~(z) and the process G(z) 
are stable, then closed loop stability is guaranteed. 

Proper ty  2. Perfect controller. Assume that 
the controller 

G~ (z) = G  fz)- '  

yields a closed-loop stable 1MC loop. Then, this con- 
troller achieves perfect set-point satisfaction despite 
any disturbances d(z) and model/plant mismatch 
G(z) ~ ~z). 

When G~(zj = C,(z) -~, however, this controller is 
nol realizable. Though "perfect control" cannot be 
achieved, it is of great theoretical and practical interest 
to determine how closely this ideal can be approach- 
ed. 

Proper ty  3. Zero offset .  Any controller G/z) 
such that 

G~ (z)=G, 'z) ' 

and which produces a stable IMC loop yields zero off- 
set. 

IMC CONTROI.I JF.R DESIGN PROCEDURE 

I. O p e n - l o o p  s table  s y s t e m s  
1-1. Unconstrained systems 

According to Property 2 an IMC controller is de- 
signed as Gr ~z)  -t. However, this perfect control- 
ler cannot be implemented for the following cases : 

(i) C_, contains time delays 
(ii) Zeros of the transfer matrix [denoted as trans- 
mission zeros of ~z)] outside the complex unit cir- 
cle (UC) 
(iii) Poles of Gc(z ) close to (-l,0)(even when stable)' 
(iv) Modeling error. 
To handle above limitations [(i)-(iv)], Garcia and 

Morari (1985a) suggested a two step controller design 
procedure. 

STEP 1. Dynamic performance 
The model is factored as 

G=G+G_ (4) 

C,_(1)=! (5) 

where C,. contains time delays and all the zeros of C_, 
outside the UC, and a controller is 

G~=G_-'. (6) 

For MIMO systems, there is generally quite some 
freedom for choosing G§ These options are discussed 
in detail by Holt and Morari (1985a, b). 

STEP 2. Robustness to modeling errors and alle- 
viation of strong control action 

In order to detune the controller for increased ro- 
bustness and less violent actions in the manipulated 
variables, Garcia and Morari (1985a) introduced a di- 
agonal first order filter 

Gr (7) 

where 

. .  ( 1-a~ 
F=Ctlag ~ 7 - - ~ 5  ] ; 0 ~ a , ~ l  (8) 

I- ~ Z  

can stabilize the closed-loop system for any model/ 
plant mismatch satisfying 

Re/A, IG(1)G(1) '1}>0 j= l , . - - , n  (9) 

where Aj[Q] denotes the jth eigenvalue of Q. 
For G(z)= G(z) IMC controller (Eq. 7) yields the 

closed-loop expression 

y= G+ (z)F (z) [s (z) - d  !z)] + d (z) (10) 

In IMC controller design procedure above, a solu- 
tion for unstable zeros is to factor transmission zeros 
outside the unit circle into G+ as suggested by Holt 
and Morari (1985a) and Garcia and Morari (1985a). An 
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exact determination of the zeros of G can be difficult 
due to numerical errors. In this situation a simpler but 
possibly less optimal solution is to use the input 
weighting matrices ,8 r 0, and a large optimization 
horizon p in IMC controller design methodology in 

Section 2-2. Also, we can distinguish systems into two 
types which are minimum phase systems and non- 
minimum systems. A minimum phase system means 
that the system model G(z) has transmission zeros in- 
side the unit circle and Cgz) -I is stable. Nonminimum 
phase systems have transmission zeros outside the 
unit cirlce, and C_J(z) -l is unstable. 

When an IMC controller is designed by Eq. (6), the 
elements of the IMC controller become polynomial 
rational functions. This IMC controller design proce- 
dine generates numerical difficulties. These numerical 
difficulties can be resolved by deriving the following 
formulae 

Gr - 0.,, , z ' "  + - . . +  8,,:,,,,+, 
8,z"§ ...§ 8.z + 8._~ 

- -  m i g j ) - n + l - R  = A.:u.,~z (11} 

A,,~, = # , ~ / g ,  when k = l 

R 1 

,~,:,.,r I E . , -  Z 8~-h,~A,~:~)/'& when k:/=l 
h = l  

N: No. of terms describing the model. 
In the case of 2 x 2 systems whose elements are 1st 

order transfer functions, we can easily derive a general 
inverse formula of the invertible part of the system's 
transfer matrix. In the other cases, i.e., n • systems 
(nz_>a) and 2x2  systems whose elements are high 
order transfer functions, a general inverse formula of 
the invertible part of the system's transfer matrix is 
ve:~ complicated. Therefore, in the next section we 
will explain the IMC controller design methodology 
which uses the impulse response model without using 
the inverse matrix of the invertible part of the system's 
transfer matrix. However, in simple syslems such as 
2 ~. 2 systems whose dements  are 1st order transfer 
functions, an [MC controller using the it'.verse matrix 
of the invertible part of the system's transfer matrix 
can deliver the same performance with less effort and 
time, and easier tuning. 
1-2. Constrained sys~ms 

Assume G(z)=G(z). it has become common 
practice to use an impulse-response representation for 
the transfer function matrices G and G (assumed to be 
open-loop stable) 

y(z)= (Ho+H~z ~- H~z-~+...)m(z) - d ( z )  (12) 

or in the difference equation form 

+ " "  [future] 

+ H~m, ~ore:~ent ] 

+Hp+,m,,_, 4-Hp.,m ~_,+.. .  Epast] 

+d,~+,, (13) 

where k is the current sampling interval, k + p is a 
future sampling interval, and Yk+v denotes a pre- 
diction made at interval k. If a model of the impulse 
response type is used to represent the process., there 
are several advantages; the order of the process is not 
at all important nonminimum phase characteristics 
can be easily handled, and parametric modeling is not 
required. 

When the process dead time is r, the effect of mk 
will not appear until r +1 sampling intervals have 
elapsed. After r +  1 sampling intervals have elapsed, 
in order that IMC includes a multivariable time delay 
compensator Garcia (I 985b) introduced a diagonal fac- 
torization of original transfer function matrix. 

C, (z.)= G. (z)CJ_ (z) (14) 

where 

G+ (z) =diag  (z . . . . . . . . . .  z '~n+t ) (15) 

r , = m i n  r , : e 0  i = l . n  j = l . m  (16) 
J 

and r# is the number of sampling intervals of process 
dead time between m,; and y,. Then 

= H . ~ m k - , , - , - b H . 2 m ~ , o  2 } H*am.§ 

+. . .  {futurel 

+ H.pm ~r [present ] 

+H,,,+,m,,. , -: H . , .  ,m~ ~ + .... [past] 

+ d  +,,~.~,. (17) 

Let b +.k +p = H.p.  lm~_~ + H.p,  2 m k _ 2  + . . . .  + d+,k, ~,, 
and collecting the p future values of y .  into a vector 
gives 

Y + k ~ )  t.[t,~Fl,~,-~"iH,~j<u~+v- ) ~b+.~+v/ 

(18i 

o r  

y . ~ = G . m , ~ §  b ,~  (19) 

where y.~ and b .  k are vectors containing np elements, 
m .  k is a vector containing mp elements, and G. is a 
np x mp Iower-bIock-tdanguIar matrix. The best pre- 
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Internal  Model ] 

Fig. 2. IMC structure with pole placement. 

diction of the disturbance is to set it equal to the dis- 
turbance at the present time 

d < ~ p : d , ~  for aIi k ~ p > k .  (2[)) 

At each time k, the following general problem is 
solvec 

rrun 1 /2 [ ( s ,  - y , ~ ) r p ( s ,  - y , ~ ) ~ - m  r ~nl ] 
' * . k  t a  qck 

(21; 
where F and ,8 are weighting matrices. 

Solution of Eq. (21) is subject to the following con- 
straints 

m t . ~ = m , ~ < m u  * (22) 

YL*<Y*k~Yu * (23) 

where mL,, mu*, YL*, and Yu* are manipulated 
variables' lower and upper bounds and controlled 
variab.ies" lower and upper bounds constant vectors 
respectively. 

Let us define a new nonnegative vector 

tl : m , ~ - -  mL*. (24} 

Equations (22) and (23) can be combined in the gen- 
eral form by a new vector (24) 

Du _> r. (25) 

Finally, substituting Eqs. (19) and (24) into Eq. (21) 
converts the optimization problem to the form 

mm (1/2u rRu - aTu) (26) 
U 

where 

a ~:: ( s , ~ -  b,~) r/X;,  - rnL*TR (27) 

R =  G ~ , / ~ ,  ~ / ;  (2~) 

and u is to be determined subject to Eq. (25). 
The, solution of Eq. (26) provides a sequence of in- 

puts to be implemented in the future. However, m 
order to compensate for disturbances, only the present 
input re(k) are implemented and Eq. (26) is "solved" 
again at subsequent intervals. 
2. O p e n - l o o p  uns tab le  s y s t e m s  

If a process is unstable, Property 1 does not hold 
and the, closed loop system will generally be unstable. 

In this case, the unstable process is stabilized by pole 
placement (Figure 2). The stabilized process transfer 
functions are 

G*=  ~I+GK]-"G (29) 

d * =  (1.+ GK~- 'd  (z) I3~i~ 
u ( z ) = m  ( z ) - K y  (z) (31) 

Consider G* is a controlled process in the IMC 
structure, then we can design:, IMC controller with the 
:model G* of the stabilized process G*. In Section 2-1 
'we explain a numerical method for calculating the out- 
put feedback gain K 

If it were not for constraints, we could use the IMC 
controller design methodology which is explained in 
Section 1-1. If we design [MC controller with quadra~tic 
programming for the stabilized process model G*, 
then we can handle the unstable process with con- 
straints. Actually u(k) is implemented for the control 
valve, but ]MC controller with quadratic programming 
can only handle the constraints of re(k). Therefore, we 
take into account the value of feedback signal at steady 
state when we determine the constraints of re(k), 
However, there is no direct way of consistently recog- 
nizing that hard limits on u(k) have been reached in a 
raultivariable control scheme of this sort. A constraint 
action scheme has been imposed on the control algo- 
rithm to compute future values of the manipulated 
variables, which accomplishes the necessary damp- 
ing. The control algorithm has the capability that is 
related to alarming of measured values. Alarms may 
be invoked for any measured point in the computer 
database. For example a high limit and a low hmit 
may be declared for a measurement. The points de- 
signated for alarm are constantly monitored and if a 
limit is exceeded a unique almm condition is declared 
for that point. An alarm action program was written 
which accomplishes the appropriate clamping re- 
quired in the control strategy. Alarm points were 
declared for variables in the control strategy. The func- 
tion of the alarm action program is to set a digital bit 
that is one of the clamp limits of the control algorithm 
blocks. The program is completely generic. 
2-.1. Design of an output feedback matrix 

Consider a controllable, observable and cyclic mul- 
tivariable system described by the state and output 
equations 

x k4-1)=Ax(k)-+-Bu (k) (32) 

y ( k ) = C x ( k )  (33) 

where x(k) is the n x 1 state vector, u(k) is the j • ] 
control input vector with l~j~n, y(k) is t h e / x  1 out- 
put vector with l*~l~n and the matrices B and C are 
of full ranks j and 1 respectively. The system can be 
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described by the transfer function relationship 

W (z) 
Y (z) = C I,zl - A ) - '  BU (z) --  U (z) I34 

V Iz) 

where W(z) = C adj(zi-A)B is the / x j  numerator poly- 
nomial matrix and V(z)-[zl-A I is the nth order open 
loop characteristic polynomial. The numerator poly- 
nomial matrix W(z) and the denominator polynomial 
V(z) can be expressed in powers of z as 

W !z) = W, z"-~ + ' "  + W ~ z -  W, /35) 

V (z)=z '~ +e,,z" ' 4  e~z+e,  {361 

where W,'s are constant l •  coefficient matrices and 
e/s are constant scalar coefficients. 

Let us now apply the constant output feedback 
control law u = m - K y  where m is t he j  x 1 command 
input vector, and restrict t he j  • l constant output feed- 
back matrix K to have the unity rank structure K :- q h  
where q and h are constant j x 1 and 1 • I vectors re- 
spectively. The closed-loop system then becomes 

x (k4 1 ) -  ( A - B K C ) x  (k', kBm(k)  C:;7) 

and the characteristic polynomial of the closed-loop 
system is (see Ref. 2) 

H ( z ) =  Izl - A §  BKCI  = V  ( z ) 4  h W l z ) q  

= z  ~+ (hW,~q + - e n ) z ~ - ~ § 2 4 7  IllS) 

Let us denote the desired closed-loop characteristic 
polynomial by the following equation 

H ! z )=z"  ~g, ,z" ~ + . . . .  g~z 4 g,. {3.ql 

Equation expressions (38) and {39) and matching coef- 
ficients of like powers of z on both sides give 

h W ~ q + e , = g ~  

h W ~ q + e ~ = g ~  

hW,,q ~ e,~= g,.,. ;4!11 

The pole placement problem thus reduces to finding 
the j  + I unknown elements of the two vectors q and h 
to satisfy the set of n nonlinear algebraic equations, 
Equations (40), as closely as possible. 

A numerical method is now described for the cal- 
culation of q and h. The two vectors q and h are recur- 
sively modified in turn to solve Eq. (40) by minimizing 

n 9 

the error function g(q ,h)= ~ [hW,q -- e,-g,.]- 
Each equation of (40) is a special kind of nonlinear 

equation called "bilinear" in that for a given q the 
equation is linear in h and for a given h it is linear in 
q. We make use of this bilinearity property and solve 
Eq. (40) as follows: Treating q as constant, Eq. (40) can 
be written as a set of linear equations in h as 

L h r = f  ;41) 

where L is a constant n • 1 matrix whose ith row is 
q r w r  and f = [gl-ep ..-, gn'en] r is a constant n • 1 
vector. Alternatively, treating h as constant, Eq. (40) 
can be written as a set of linear equations in q as 

Mq = f ,42 

where M is a constant n x m matrix whose ith row is 
hW,. Equations (41) and (42) are now solved in the 
least-square sense by the following recursive algorithm 
to minimize the error function 

E , ; q , h ) =  , [hW~q ~ e~-g ,~  2= ]1LhT-f  II 

= II Mq - f I! 2. 

(i) Set q = q01, the initial value of q, and find the 
least-squares solution of Eq. (41) as 

where * denotes pseudoinverse. The least-squares 
error of Eq, (41) is then given by 

E ~ = E ( q ~ ' , h l )  = L ( q '  h r~ f l[ ~, 

(ii) Set h = h (1) and obtain the least-square solution 
of Eq. (42) for q as 

q , 2 = ( M i h ,  ~+f. 

The least-squares error of Eq. (42) is then giw~n by 

E z = E ( q  z:, h ' l )  - ]] M Ih~'.bq ~ - f  [[~ 

(iii) Update I] to its refined value q(2i and repeat (i) to 
obtain h/2), the refined value of h, and evaluate the 
least-squares error E 3. 

(iv) Set h = h t2) and repeat (ii) to obtain q{31 and 
evaluate the least-squares error E 4. 

(v) Set q= q<~) anti repeat from (i) until con,,e~- 
gence. 
In Ref. 12, it is shown that the successive errors are 
monotonically decreasing for all initial value ,ql~J until: 

(a) The absolute ntinimunl value of E is reached at 
i "~ iteration and E.,,.,>O. Then the error Cannot ,=It- 
crease any further and E, : E i for all j >i. In this case 
the pole placement problem does not have an exact 
solution and the best approximate solution is given by 
the last values of q and h in the /h  iteration. 
or (b) A local minimum of error function is reached at 
the /h iteration and E,. L is not outside of this local 
valley. Then again we have E j -  E, for all j>i .  In this 
case different initial values q(n must be tried in order 
to avoid the lc, cal minimum. 

If neither {a) nor (b) oc(tns, the pole lllacemellt 
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Internal Model I 

Fig. 3. Equivalent representat ion of Figure 2 for in- 
ternal stability analysis .  

problem has an exact solution and the error decreases 
monotonically towards zero and the recursive proce- 
dure is continued until the error is acceptable. 

APPLICATION EXAMP1.K~ 

I. M i n i m u m  p h a s e  systems 
1-1. Open-loop stable systems 
1-1-1. Unconstrained systems 

Pulse testing of a distillation column yields the fol- 
lowing dynamic model between product concentra- 
tions y], Y2 and product drawoff rates ram, m2: 

1.0e '~ 0 .3e  - ~  

5s + 1 m~ (s) 

Time is measured in minutes. Assume the process 
model is exact. When a sampling interval of 1 min is 
used, the discrete time transfer matrix has the form 

,[~ ' ~  ,, (zt z-'g,, t~)) 
G (z) 

= ~ . z % , ,  (z)z- 'g ,~  (z) 

whe[e the demen t s  g,~. are semi-proper functions of z 
We obtain the factorization matrix through the IMC 

controller design procedure 

0 ' ' = (z- 'g~,  (z) g ~  (z~) 

An IMC controller is 

1 - u  
where  F =  - - I .  

1 - az -~ 

The response of the perfect controller G c = G_-~ to a 
set-point change in y~ to 1.0 is shown in Figure 6. This 
deadbeat response shown in Figure 6 is obtained 
throagh relatively strong input action. A tuning pa- 
rameter u which has a dired effect on the closed-loop 
response (Eq. 10) can alleviate the strong input action 
(Figure 4,5). 

13 

I I  

91 
? O ALPHA = 0.0 

[ 
3 

- t  I i i i i 

0 5 t0 15 20 25 30 
Time(min) 

Flg. 4. Manipulated variable I (m 0 responses  to Y l 
set]point change. 

2 

1 �84 

~ ~ I 
-l-  

~- - 2  O ALPHA = 0.0 
_3 ~ + ALPHA = 0.7 

~ PI 
- 4  

-5  
0 ~ /o t'~ 2'o 2'5 30 

Time(min) 

Fig. 5. Manipulated variable 2 (mz) responses  to Yl 
setimint change. 

0) 

. 2  

m 

1.5 

0.5 l /  "OALPHA= 0.0 

0 I:p , LPHA:~ 

-o~ ; l;  l's 2'0 2; 30 
Time(rain) 

Fig. 6. Controlled variables I (Yl) responses  to Yl 
setpoint change. 

The performance of IMC is compared with that of 
PI controller using deadtime compensator. SISO PI 
loops with controllers 

g c , = 1 0 +  1/s 

g~2= 10 - 2 /s  

are used. Figures 6 and 7 show that the performance 
of IMC is superior to PI controllers with dead time 
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0"61 

@ 0.3 

! 1 
~ i �9 ~ -0.3 

~-0.6 / 

t i /  
V "~ I + ALPHa = o.7 

i i i i i 

0 5 l0 15 20 25 30 
Time (rain) 

Fig. 7. Controlled variables 2 0'2) responses to Yl 
setpolnt change. 

1.5 

"~ ~* REFLUX(C) 
1 
~ + STEAM{C) [ 

~- 0.5+ I I 

0 

- 0 . 5 1 ,  , , , , , 
0 5 10 15 20 25 30 35 

Time(mini 
Fig. 9. Woodlllerry column: Manipulated variables 

responses to Yt setpolnt change (with con- 
stralnts). 

2" 

1.5" 

;~ 1. 
F 

- 0.5 ! 

, " 2  
-0.5 

0 

~ REFLUX 

I 

; l'0 1'5 2'0 2'5 :;0 35 
Time (rain) 

Fig. 8. Wood/Berry column: Manipulated variables 
responses to Yl setpoint change (without con- 
straints). 

compensator. When IMC are used, smoother ap- 
proaches to the setpoints are obtained. 
1-1-2. Constrained systems 

We have studied two systems which are Wood/ 
Berry column model and Gagnepain and Sebog model. 
1-1-2-1. Wood/Berry column model 

1MC with quadratic programming is applied to 
Methanol/Water Distillation column. Wood/Berry 
(1973) have reported transfer function models of an ex- 
perimental methanol/water column. The column 
model is 

I ,. l 
y, ( s ) / = |  16~-77+-I 21.0s 4-1 m, (s) 

/ [ 6 . 6 e  . . . .  tg. 4 e - " / /  
y2(s)_ - 1 0 . 9 s + 1  ~ )km2(s} 

(3 .8e  - ' s  

+ 1  1 4 ~ s +  1 ]d  (s). 

4.9e '~ 
"13.2s + 1 

Time is measured in minutes. Assume the process 
model is exact. We used a sampling interval of 1 min. 

a.. 1.5 �84 

E 
�9 

2" 0.5 
t-- 

0,~ 

'~ -0.5 
0 

. . . . . . . .  = . . . . . . . . .  [ -OHCOMP L ~  
] + BO COMP [~T 

/ . /  I *OHCOM~C) / 
/ [ OBO COMP(C}]==o 

1'o t'5 2'0 s as 
Time (min) 

Fig. I0. WoodlBerry column: Controlled variables 
responses to Yl setpolnt change. 

The diagonal time delay factorization matrix for this 
system is 

/ 0+ (z)= 
.0  z- '  

Weighting matrices of the optimization problem are 
F = | ,  fl = 0  and the optimization horizon is 10. 
Lower and upper bounds of the manipulated variable 
are assumed to be m L = - 0 . 4  and m y =  0.6  respec- 
tively. When the filter time constant a is 0 and manip- 
ulated variables have no constraints, the IMC control- 
ler behaves like a perfect controller (Figure 8,10). If 
constraints of the type given in Eq. (25) are imposed, 
the IMC controller can handle constraints with s o m e  
what loose performance (Figure 9,10). 

To investigate the case of model/plant mismatch 
we obtained a model with a structure 

. 11.8e -s - 17.9e -~s 

1~=]1~.7~+-1 20 .0s+1  ] 

6.0e 75 - 18.4e  z s  

"i~.  i)T+ i 13. 45+ 1 

For this model, the diagonal time delay factorization 
matrix is 
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-~ 0.8 

~' 0.4 
o 

.~ 0 
N 

-0.4 
()- 5 10 1'5 2'0 2'5 3'0 3'5 4'0-4'5 50 

Time(rain) 

Fig. II.  Wood/Berry  column: Manipulated vari- 
ables  responses  to Yz setpoint change (with 
model ing error). 

v 1.4 

~ 0.6 

~ 0.2 

-02 

/ f ' -   .co+ 

0 5 10 15 20 25 30 35 40 45 50 
Time(rain) 

Fig. 12. Wood/Berry  column: Controlled variables 
responses  to Yz setpoint change {with model- 
ing error}. 

The simulation result of plant/model mismatch 
case is shown in Figure 11, 12. When a -  0.8 the IMC 
controller achieves good setpoint tracking even for the 
ease with the model/plant mismatch. 
1-1-2-2. Gagnepam and Seborg model 

The 3 x 3 system is 

- 2  1.5 1 
lOs -1  5s~ 1 s + l  

1.5 - 1 2. 
C , _ = :  . . . . . . . . . . . . . .  

5 s -  1 s + l  10s 4. l 

1 2 1.5 
s~ 1 10s + 1 5 s4  1 

Time is measured in minutes. Assume the model is 
exact. We used a sampling interval of O.t ram. Filter 
time constant ,:, is 0.5. Weighting matrices of the 
optimization problem are [" :: I, ,8 - -0  and the 
optimization horizon is 10. When the constraints were 
not imposed on the manipulated variables, the 

v 08 

0.6 

~: 0.4 

0.2 

g 0 a-i 
> 

-0.2 

• M1 
+ M2 

M3 

I i i  i 
~J~'~x•215215215215215215215215215215215215215 

0 ; 10 1'5 20 2'5 {0 3'5 4---O 
Tim~min) x 10 

Fig. 13. Gagnepaln and Seborg model: Manipulated 
variables responses  to Yl set]point change. 

"~ 1.4- 

N 1- 

~: 0.6 
& 

g 
i~ 0.2 

C, -0.2 1 

Fig. 14. 

e-Y1 

+ Y2 J e Y3 

5 t0 15 20 25 30 35 4% 
Time(min) x lO 

Gagnelmin and Sehorg modeh Control led 
variables responses  to Yl setpoint change. 

responses of the IMC controller with quadratic 
programming are shown in Figure 13, 14. The results 
show that IMC controller achives good setpoint 
tracking. We have easily designed IMC controller 
using the impulse response model for the 3 x 3 system. 
t-2. Open-loop unstable system 

A two-input-two-output system is 

x ( k - 1 ) = A x ( k )  ~ Bu ik ]  

y (k) = Cx (k) 

where A=  B =  
0.2 - 1 .  0 0 

As the poles of this system are -1.0268 and -1.3732, 
the system is open-loop unstable. This system can be 
stabilized by pole placement (Figure 2). 

x ik ~ 1 } = A x  (k)-i Bu (k) (4~) 

y {k)=Cx <k) (44) 

u (k): - K y  (k) +.-m (k). (45') 

Substituting Eq. (45) into Eq. (48) gives 
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~ --9"  

-~3  

~ -17 ._~ 

~ -21 
0 5 l0 15 20 15 

Time(min) 
3O 

Fig. 15. Unstable process:  Manipulated variable I 
(m ~) responses  to yz setpoint change. 

1.5 

0.5 
o 

.o 0 

-0.5 L_ 
0 

Fig. 17. 

5 10 15 20 25 30 
Time(min) 

Unstable process:  Controlled variables re- 
sponses  to Yz setpoint change. 

E 

l0 

9 

8 

7 

6 

5 
0 

§ . . . .  

5 t0 15 20 25 30 
Tinle(min) 

Fig. 16. Unstable process:  Manipulated variable 2 
{mz) responses  to Y2 setpoint change. 

4 

~- 0 �9 

- 2  

~ REFLUX 

+ REFLUX(C) 

0 5 l0 15 20 25 30 35 
Tim~min) 

Fig. 18. Karim model: Reflux responses  to Yl set- 
point change. 

x (k4 1 ) =  ( A -  BKC)x (k) ~ Bm (ks. 

- 1 7  40~ 
When K : 19J, the poles of the closed-loop 

1 

process are 0.5 and 0.5. It is stable. IMC control can be 
applied to the stabilized process to improve control 
performance, Weighting matrices are 1' = ! and fl :: 
0 and the optimization horizon is 5, 

We have simulated two cases to a set-point change 
in Y2 to 1.0. In the first case, the filter hme constant u 
was set to 0 and the constraints were not imposed un 
the manipulated variables. In the second case, we 
LLsed a = 0 and imposed constraints on manipulated 
variables, The first manipulated variable's lower bound 
was rolL = -11.0, The second manipulated variable's 
upper bound was m2u = 6.0. No other constraints were 
considered. The results from the first case show Ihe 
perfect control for set-point tracking at the expense of 
big changes in the manipulated variables as shown in 
Figure 15, 17. The result from the second case shows 
poorer and slower response to set-point change with 
smaller changes in the manipulated variables as 
shown in Figure 16,17. But both cases show stable 

control. 

2. N o n m i n i m u m  p h a s e  s y s t e m s  
We have :studied Karim model. The open-loop 

model of a 30-plate, 22.8 cm diameter smeve tray 
column has been reported previously (1979). The 
controlled variables are the pressure-c0rrected tern- 
peratures at plates 4 and 24. The manipulated vari- 
ables are reflux and steam flow rates. The open-loop 
responses are obtained by givi~g step changes of - 10 
percent change is 

- 0 . 4 2 7 e  s 0,543e ~ 
y, ~s! -~5 - ;T i - -  51 .~s  § 1 

The output vector and the input vector are 

y ( s ) =  "F m ' , s ) :  St 

where T24 and T 4 are the pressure-corrected tempera- 
tures of plates 24 and 4, respectively, and Re and St are 
reflux and steam flow rates. 

Time is measured in minutes. A sampling interval 
of 1 rain is selected. When tile process model is exact, 
the discrete time transfer matrix has the form 
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12 

10 

6 .N- STEAM 

4 4- STEAM(C) 

.~ 2 . . . . . . . . . . . . . . . . . . . . . .  

~ 0 
~' -2 

0 ; 1'0 1'5 2'0 2 '5--3~0 35 
Time(min) 

Fig. 19. Karim model: Steam responses to Yl set- 
point change. 

1.sl 

>, 1! 

0.5 
3'-" 

0, 
.~_ 

-02 

f I + Y2 
/ /  I ~ Yl(Cl ] 
V ~ [ -,~Y2(C) [ 

i i i i i 

10 15 20 25 30 

Tim~min) 

Fig. 20, Karim model: Controlled variables 
s p o n s e s  to Yl setpoint change. 

35 

r~t- 

- 2 . 8 6 4 7 •  ~z 1 4.72• , d 

G (z) = G (z) = ] z - 0.93551 z - 0.91,572 

L -1 .4233•  -~ 6.273• 
z -  0.95455 z -  0.9131 

which is open-loop stable. Then the roots of the nu- 
merator of 

det G (z)= ( -  1 .786+3.3414z- '+5.157712z 2 

- 12. 423 z-3-~-5.740513z - ' )  • 10 ' /  

(z -  0.93551) (z -  0.91672) (z -  0.95455) 

(z-0.9131) 

gives Ihe system zeros 

z = 0.933453, 1.96089, 0.908620, -1.93225 
and consequently G has transmission zeros outside 
the unit circle. 

If G(z) has transmission zeros outside the unit 
circle, simple exponential filtering alone cannot 
stabilize the closed-loop system. If we select output 
weighting matrices as 1 and the optimization horizon 
as 10, this system can be stabilized with any input 

weight: in fact fl - 10-4I produces a stable controller. 
The filter time constant a is 0.5. Lower and upper 

bounds of the manipulated variables are assumed to 

When manipulated variables have no constraints, 
IMC controller with quadratic programming achieves 
good setpoint tracking (Figure 18, 20). If constraints 
are imposed on manipulated variables, the IMC con- 
troller with quadratic programming can explicitly 
handle constraints with poorer performance in the 
controlled variables as shown in Figure 19, 20. 

CONCLUSIONS 

IMC is implemented for different types of multivari- 
able control problems. The following conclusions have 
emerged; (1) When an IMC controller is designed by 
inverting the invertible part of the system's transfer 
matrix, the elements of the IMC controller become 
polynomial rational functions. This IMC controller 
design procedure generates numerical difficulties. We 
derived general formulae for 2 x 2 systems to resolve 
these numerical difficulties. (2) Using quadratic pro- 
gramming we could easily design the IMC control- 
lers for 3 • 3 systems and nonminimum phase systems 
without using an inverse matrix of the invertible [)art 
of the system's transfer matrix. (3) Quadratic program- 
ruing (QP) can handle MIMO systems with constraints. 
(4) IMC control can be used for open-loop unstable as 
well as stable systems. For open-loop unstable pro- 
cesses, we can apply 1MC control after stabilizing the 
open loop unstable system using the pole placement 
technique. Simulation results show stable and good 
control performance. 
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NOMENCLATURE 

Co(z) : 
d(z) : 
F(z) : 

Go(z) : 
G ( z ) :  
~,(z) : 
H i : 
re(z) :  
m.k : 

coefficient of controller transfer function 
conventional feedback controller 
disturbance 
filter 
IMC controller 
process transfer function 
process model transfer function 
impulse response coefficient 
manipulated variable vector 
collecting w.~ctor of p future values of future in- 
puts 
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m L. : manipulated variables' lower bounds 
mv. : manipulated variables' upper bounds 
s(z} : set-point vector 
y(z) : controlled variable vector 
y.~ : collecting vector of p future values of future 

outputs 

G r e e k  Letters  

,u : filter time constant 
,8 : input weighting matrix 
1-' : output weighting matrix 
r : time delay 
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